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Abstract

Two related topics are addressed in this article. The ®rst part of the article proves that, for a certain admissible class

of problems in linear elasticity, the hypersingular boundary contour method (HBCM) can be collocated at all boundary

points on the surface of a three-dimensional (3-D) body, including those on boundary contours, edges and corners,

because the HBCM-shape-functions satisfy, a priori, all the smoothness requirements for collocation at these points. In

contrast, the hypersingular boundary element method needs, in general, relaxation of some of these smoothness re-

quirements for its shape functions, even for collocation at regular points that lie on the boundaries of boundary ele-

ments.

A hypersingular residual, obtained from the standard and hypersingular boundary integral equations (HBIEs), has

been recently proposed as a local error estimator for a boundary element, for the boundary integral equation. The

second part in the present article is concerned with a de®nition of an analogous local error estimator for the boundary

contour method, for 3-D linear elasticity. This error estimator is then used to drive an h-adaptive meshing procedure.

Numerical results are presented to demonstrate adaptive meshing for selected example problems. Ó 2000 Elsevier

Science Ltd. All rights reserved.

Keywords: Three-dimensional; Linear elasticity; Boundary contour method

1. Introduction

1.1. The boundary contour method

The usual boundary element method (BEM), for three-dimensional (3-D) linear elasticity, requires
numerical evaluation of surface integrals on boundary elements on the surface of a body (see, e.g. Muk-
herjee, 1982). Nagarajan et al. (1994, 1996) have recently proposed a novel approach called the boundary
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contour method (BCM), that achieves a further reduction in dimension. The BCM, for 3-D linear elasticity
problems, only requires numerical evaluation of line integrals over the closed bounding contours of the
usual (surface) boundary elements.

The central idea of the BCM is the exploitation of the divergence-free property of the usual BEM in-
tegrand and a very useful application of Stokes' theorem, to analytically convert surface integrals on
boundary elements to line integrals on closed contours that bound these elements. Lutz (1991) ®rst pro-
posed an application of this idea for the Laplace equation. Nagarajan et al. (1994) generalized this idea to
linear elasticity. Numerical results for two-dimensional (2-D) problems, with linear boundary elements, are
presented in Nagarajan et al. (1994), while results with quadratic boundary elements appear in Phan et al.
(1997). 3-D elasticity problems, with quadratic boundary elements, is the subject of Nagarajan et al. (1996)
and Mukherjee et al. (1997). Hypersingular boundary contour formulations, for 2-D (Phan et al., 1998) and
3-D (Mukherjee and Mukherjee, 1998) linear elasticity, have been proposed recently.

1.2. The hypersingular boundary element method

Hypersingular boundary element equations (HBIEs) are derived from a di�erentiated version of the
usual boundary integral equations (BIEs). HBIEs have diverse important applications and are the subject
of considerable current research (see, e.g. Krishnasamy et al., 1992; Tanaka et al., 1994; Paulino, 1995;
Chen and Hong, 1999 for recent surveys of the ®eld). HBIEs, e.g. have been employed for the evaluation of
boundary stresses (e.g. Guiggiani et al., 1992; Wilde and Aliabadi, 1998; Zhao and Lan, 1999; Chati and
Mukherjee, 1999), in wave scattering (e.g. Krishnasamy et al., 1990), in fracture mechanics (e.g. Gray et al.,
1990; Lutz et al., 1992; Paulino, 1995; Gray and Paulino, 1998), to obtain symmetric Galerkin boundary
element formulations (e.g. Bonnet, 1995; Gray et al., 1995; Gray and Paulino, 1997a,b), to obtain the
hypersingular boundary contour method (Phan et al., 1998; Mukherjee and Mukherjee, 1998), to obtain the
hypersingular boundary node method (Chati et al., 2000), and for error analysis (Paulino et al., 1996;
Menon, 1996; Menon et al., 1999; Chati et al., 2000) and adaptivity (Chati et al., 2000). A lively debate (e.g.
Martin and Rizzo, 1996; Cruse and Richardson, 1996), on smoothness requirements on boundary variables
for collocating an HBIE on the boundary of a body, has apparently been concluded recently (Martin et al.,
1998).

1.3. Local error estimates from the BIE and the HBIE

Paulino (1995) and Paulino et al. (1996) ®rst proposed the idea of obtaining a hypersingular residual by
substituting the BEM solution of a problem into the hypersingular BEM (HBEM) for the same problem;
and then using this residual as an element error estimator in the BEM. It has been proved that (Menon,
1996; Menon et al., 1999), under certain conditions, this residual is related to a measure of the local error on
a boundary element, and has been used to postulate local error estimates on that element. This idea has
been applied to the collocation BEM (Paulino et al., 1996; Menon et al., 1999) and to the symmetric
Galerkin BEM (Paulino and Gray, 1999). Very recently, residuals have been obtained in the context of the
boundary node method (BNM) (Chati et al., 2000) and used to obtain local error estimates (at the element
level) and then to drive an h-adaptive mesh re®nement process. An analogous approach for error estimation
and h-adaptivity, in the context of the BCM, is described in the present article.

1.4. Outline of the present paper

This article is organized as follows: The usual BCM and HBCM, for 3-D linear elasticity, is brie¯y
reviewed ®rst. The interesting question of collocating the hypersingular BIE, at edges and on corners on the
boundary of a body, is discussed next. It is shown that, for problems within an admissible class de®ned later
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in this article, the HBCM can be easily collocated at such irregular points (where the boundary of a body is
not locally smooth) because the HBCM shape functions satisfy, a priori, all the smoothness requirements
for collocation at an irregular point.

The next few sections of this article present the hypersingular residual as a measure of local error in the
context of the BCM and HBCM, and an h-adaptive strategy driven by these error estimators. Numerical
results for some selected examples follow. This article ends with some concluding remarks.

2. Boundary surface and boundary contour integral equations

A regularized form of the standard BIE (Rizzo, 1967), for 3-D linear elasticity, can be written as

0 �
Z

oB
Uik�x; y�rij�y�
� ÿ Rijk�x; y�fui�y� ÿ ui�x�g

�
ej � dS�y� �

Z
oB

Fk � dS�y�: �1�

Here, oB is the bounding surface of a body B (B is an open set) with in®nitesimal surface area dS � dSn,
where n is the unit outward normal to oB at a point on it. The stress tensor is r, the displacement vector is u

and ej �j � 1; 2; 3� are global Cartesian unit vectors. The BEM Kelvin kernels are written in terms of
(boundary) source points P and ®eld points Q. These are

Rijk � ÿ 1

8p�1ÿ m�r2
�1� ÿ 2m��r;idjk � r;jdik ÿ r;kdij� � 3r;ir;jr;k

�
; �2�

Uik � 1

16pl�1ÿ m�r �3� ÿ 4m�dik � r;ir;k� �3�

in terms of r, the Eucleidian distance between the source and ®eld points x and y, and the shear modulus l
and Poisson's ratio m of the isotropic elastic solid. Also, d is the Kronecker delta and ;i � o=oyi: The range of
indices in these and all other equations in this article is 1,2,3, unless speci®ed otherwise.

It has been shown in Nagarajan et al. (1994, 1996) and Mukherjee et al. (1997) that the integrand vector
Fk in Eq. (1) is divergence free (except at the point of singularity P � Q) and that the surface integral in it,
over an open surface patch S 2 oB, can be converted to a contour integral around the bounding curve C of
S, by applying Stokes' theorem. Therefore, vectors Vk exist such thatZ

S
Fk � dS �

I
C

Vk � dr: �4�

Since the vectors Fk contain the unknown ®elds u and r, shape functions must be chosen for these
variables, and potential functions derived for each linearly independent shape function, in order to de-
termine the vectors Vk. Also, as the kernels in Eq. (1) are functions only of zk � yk ÿ xk (and not of the
source and ®eld coordinates separately), these shape functions must also be written in the coordinates zk in
order to determine the potential vectors Vk. Finally, these shape functions are global in nature and are
chosen to satisfy, a priori, the Navier±Cauchy equations of equilibrium. The weights, in linear combina-
tions of these shape functions, however, are de®ned piecewise on boundary elements.

Quadratic shape functions are used in this work. With

zk � yk ÿ xk; �5�
one has, on a boundary element

ui �
X27

a�1

bauai �y1; y2; y3� �
X27

a�1

b̂a �x1; x2; x3�uai �z1; z2; z3�; �6�
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rij �
X27

a�1

baraij �y1; y2; y3� �
X27

a�1

b̂a �x1; x2; x3�raij �z1; z2; z3�; �7�

where uai; raij (with i � 1; 2; 3 and a � 1; 2; . . . ; 27) are the shape functions and ba are the weights in the linear
combinations of the shape functions. Each boundary element has, associated with it, 27 constants ba, which
will be related to physical variables on that element. This set of b's di�er from one element to the next.

The displacement shape functions for a � 1; 2; 3 are constants, those for a � 4; . . . ; 12 are of ®rst degree
and those for a � 13; . . . ; 27 are of second degree. There are a total of 27 linearly independent (vector)
shape functions ua. The shape functions for the stresses are obtained from those for the displacements
through the use of Hooke's law. The shape functions uai and raij are given in Mukherjee et al. (1997).

It is easy to show that the coordinate transformation (5) results in the constants b̂j being related to the
ba's as follows:

b̂i �
X27

a�1

Sia �x1; x2; x3�ba; i � 1; 2; 3; �8�

b̂k �
X27

a�1

Rna �x1; x2; x3�ba; k � 4; 5; . . . ; 12; n � k ÿ 3; �9�

b̂a � ba; a � 13; 14; . . . ; 27; �10�
where

Sia � uai�x1; x2; x3�; i � 1; 2; 3; a � 1; 2; . . . ; 27;

Rka � oua`�y1; y2; y3�
oyj

����
�x1;x2;x3�

; k � 1; 2; . . . ; 9; a � 1; 2; . . . ; 27

with j � 1� b�k ÿ 1�=3c and ` � k ÿ 3j� 3. Here, the symbol bnc, called the ¯oor of n, denotes the largest
integer less than or equal to n.

It is useful to note that the matrices S and R are functions of only the source point coordinates
�x1; x2; x3�.

The procedure for designing boundary elements in the 3-D BCM is discussed in detail in Nagarajan et al.
(1996) and Mukherjee et al. (1997). A set of primary physical variables ak, whose number must match the
number (here 27) of arti®cial variables bk on a boundary element, are chosen ®rst. The ®rst step in the BCM
solution procedure is to determine the unspeci®ed primary physical variables in terms of those prescribed
from the boundary conditions. Later, secondary physical variables as well as stresses, at boundary points,
are obtained from a simple post-processing procedure. Unlike in the standard BEM, it is particularly easy
to obtain surface variables, such as stresses and curvatures, in the BCM. This issue is discussed in Section 3.

A square invertible transformation matrix T relates the vectors a and b on element m according to the
equation:

a
m � T

m
b
m
: �11�

The CIM9 boundary element, shown in Fig. 1, is used in the present work. The displacement u is the
primary physical variable at the three corner nodes Ci and the three midside nodes Mi, while tractions are
primary variables at the internal nodes Ii. Thus, there are a total of 27 primary variables. The BCM
equations are collocated at the six peripheral nodes as well as at the centroid of the element. In a typical
discretization procedure, some of the peripheral nodes may lie on corners or edges, while the internal nodes
are always located at regular points where the boundary oB is locally smooth. It is of an obvious advantage
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to have to deal only with displacement components, that are always continuous, on edges and corners,
while having traction components only at regular boundary points. It is important to restate that the BCM
is versatile enough to handle any well-posed problem in linear elasticity ± all the secondary variables can be
easily determined by simple post-processing once the primary BCM equations are solved.

Details of the shape functions and intrinsic coordinates, that are used to de®ne the geometry of the
boundary elements, are available in Mukherjee et al. (1997). Also, the procedure for obtaining the vector
potentials Vk, for nonsingular as well as singular integrands, are available in Nagarajan et al. (1996) and
Mukherjee et al. (1997). Finally, the regularized BIE, Eq. (1), is converted into a regularized BCE that can
be collocated (as in the usual BEM) at any point (including those on edges and corners). This equation is

0 � 1

2

XM

m�1

X27

a�13

I
Lm

raijUik

ÿ�
ÿ uaiRijk

�
�jntzndzt

�
T
mÿ1a

m
h i

a

�
XM

m�1

X12

a�4

I
Lm

raijUik

ÿ�
ÿ uaiRijk

�
�jntzndzt

�
RT

mÿ1a
m

h i
aÿ3

�
XM

m�1
m 62S

X3

a�1

I
Lm

Dajkdzj

� �
S T

mÿ1a
m

��
ÿ T

P ÿ1a
P
��

a

�12�

with I
Lm

Dajkdzj � ÿ
Z

Sm

Rajkej � dS

� 1

8p�1ÿ m�
I

Lm

�kij
r;ar;i

r
dzj � 1ÿ 2m

8p�1ÿ m�
I

Lm

�akj
1

r
dzj � H

4p
dak: �13�

Here, Lm is the bounding contour of the surface element Sm. In the above, H is the solid angle (subtended by
a surface element m at a collocation point x), which is de®ned as:

H �
Z

Sm

r � dS

r3
: �14�

Also, T
m

and a
m

are the transformation matrix and primary physical variable vectors on element m, T
P

and a
P

are the same quantities evaluated on any element that belongs to the set S of elements that contain the
source point x, and �ijk is the usual alternating symbol.

The procedure for obtaining an assembled discretized form of Eq. (12) is described in Mukherjee et al.
(1997) and Mukherjee and Mukherjee (1998). The ®nal result is

Ka � 0; �15�
which is written as

Ax � By; �16�

Fig. 1. The CIM9 boundary element.
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where x contains the unknown and y the known (from the boundary conditions) values of the primary
physical variables on the surface of the body. Once these equations are solved, the vector a is completely

known. Now, at a post processing step, b
m

a can be easily obtained on each boundary element from Eq. (11).

3. Hypersingular boundary surface and boundary contour integral equations

A HBIE can be obtained by di�erentiating the standard BIE at an internal point, with respect to the
coordinates of this internal source point. A regularized version of this equation, containing, at most, weak
singular integrals, is (see, e.g. Cruse and Richardson (1996) for a detailed discussion):

0 �
Z

oB
Uik;n�x; y� rij�y�

� ÿ rij�x�
�
nj�y�dS�y�

ÿ
Z

oB
Rijk;n�x; y� ui�y�� ÿ ui�x� ÿ ui;`�x� y`� ÿ x`��nj�y�dS�y�: �17�

Martin et al. (1998, Appendix II2, p. 905) have proved that Eq. (17) can be collocated even at an edge or
corner point x on the surface of a 3-D body, provided that the displacement and stress ®elds in Eq. (17)
satisfy certain smoothness requirements. This issue is discussed further in Section 4 of this article. Such
points, at which the bounding surface of a body is not locally smooth, are henceforth referred to as ir-
regular points. Conversely, the boundary of a body is locally smooth at a regular point. Further, a regular
surface point can lie on a contour (regular contour point, RCP) or away from a contour (regular o�-
contour boundary point, ROCBP). A point inside a body is called an internal point.

The regularized HBIE (17) can be converted to a regularized hypersingular boundary contour equation
(HBCE). Details are available in Mukherjee and Mukherjee (1998). The result is:

0 � ÿ
XM

m�1

X27

a�13

I
Lm

raijUik

ÿ�
ÿ uaiRijk

�
�jntdxt

�
T
mÿ1a

m
h i

a

�
XM

m�1

X12

a�4

I
Lm

raijUik

ÿ�
ÿ uaiRijk

�
�jstxsdxt

�
R;N T

mÿ1a
m

h i
aÿ3

ÿ
XM

m�1
m62S

X12

a�4

I
Lm

raijUik

ÿ�
ÿ uaiRijk

�
�jntdxt

�
R T

mÿ1a
m

��
ÿ T

P ÿ1a
P
��

aÿ3

�
XM

m�1
m62S

X3

a�1

I
Lm

Dajkdxj

� �
S;N T

mÿ1a
m

��
ÿ T

P ÿ1a
P
��

a

�
XM

m�1
m62S

X3

a�1

I
Lm

Rajk�jntdxt

� �
S T

mÿ1a
m

��
ÿ T

P ÿ1a
P
��

a

; �18�

where, as before, S is the set of boundary elements that contains the source point x. The derivatives R;N and
S;N in Eq. (18) are taken with respect to the source point coordinates xn. In Eq. (18), the integrands in the
®rst two terms are regular �O�1��. The third and fourth �potentially strongly singular, O�1=r�� as well as the
®fth �potentially hypersingular, O�1=r2�� need to be evaluated only on nonsingular elements.
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4. Collocation of the HBCE at an irregular surface point

4.1. The HBIE (17)

Let oBn, �n � 1; 2; 3; . . . ;N� be smooth pieces of oB that meet at an irregular point x 2 oB. Also, let a
source point, with coordinates xk, be denoted by P, and a ®eld point, with coordinates yk, be denoted by Q.

Martin et al. (1998) state the following requirements for collocating the HBIE (17) at an irregular point
P 2 oB. These are

(i) The displacement u must satisfy the equilibrium equations in B.
(ii) (a) The stress r must be continuous in B.

(b) The stress r must be continuous on oB.
(iii) ju�Qn� ÿ uL�Qn; P �j � O�r�1�a�

n � as rn ! 0, for each n.
(iv) �rij�Qn� ÿ rij�P ��nj�Qn� � O�ra

n� as rn ! 0, for each n:
In the above, rn � jy�Qn� ÿ x�P �j;Qn 2 oBn; and a > 0: Also,

uL
i �Qn; P � � ui�P � � ui;j�P ��yj�Qn� ÿ xj�P ��: �19�

There are two important issues to consider here.
The ®rst is that, if there is to be any hope for collocating (17) at an irregular point P, the exact solution of

a boundary value problem must satisfy conditions (i)±(iv). Clearly, one should not attempt this collocation
if, for example the stress is unbounded at P (this can easily happen ± see an exhaustive study on the subject
in Glushkov et al. (1999)), or is bounded but discontinuous at P (e.g. at the tip of a wedge ± see, e.g. Zhang
and Mukherjee (1991)). The discussion in the rest of this article is limited to the class of problems, referred
to as the admissible class, whose exact solutions satisfy conditions (i)±(iv).

The second issue refers to smoothness requirements on the shape functions for u, r and the traction
s � n � r in Eq. (17). The simpler case of collocating Eq. (17) at a RCP is considered ®rst. It is very di�cult,
in practice, to ®nd BEM shape functions that satisfy, a priori, conditions (ii(b))±(iv) (modi®ed to suit a
RCP ± see Martin et al., 1998, p. 901) at a RCP on the surface of a 3-D body of arbitrary shape. Hence, the
search for the so-called ``relaxed smoothness requirements'', i.e. allowing violation of some of the (modi-
®ed) conditions (ii(b)±iv), for shape functions at isolated RCPs on oB: This topic has been the subject of
intense debate (e.g. Cruse and Richardson, 1996; Martin and Rizzo, 1996). The current thinking (Martin
et al., 1998) is that, while relaxed smoothness strategies violate strict mathematical requirements, such sins
might, in fact, be forgivable in a clever (e.g. based on Eq. (51) in Martin et al., 1998) numerical imple-
mentation of the HBIE. Researchers (e.g. Huang and Cruse, 1994; Cruse and Richardson, 1996; Rich-
ardson et al., 1997; Liu and Chen, 1999), have been able to get satisfactory numerical results with such
``relaxation strategies''.

The situation, of course, is more complex if one desires to collocate Eq. (17) at an irregular point P on
oB: Martin et al. (1998) feel that the requirements (i)±(iv) are more stringent in this case, although the
authors of this article feel that this issue demands further research.

4.2. The HBCE (18)

The HBCE (18) is based on the shape functions given in Eqs. (6)±(7). The shape functions have both a
global (they are initially de®ned as functions of y) as well as a local (the weights bk are only de®ned
piecewise on the boundary elements) character.

Consider a singular boundary element containing the source and ®eld points P and Q, with P, an ir-
regular point on oB. Let this element be any one of the smooth pieces of oB that meet at P. From Eqs. (6)±
(7), it is easy to show that
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ui�Q� ÿ uL
i �Q; P � � ui�Q� ÿ ui�P � ÿ ui;j�P ��yj�Q� ÿ xj�P �� �

X27

a�13

ba�uai�z� � O�r2�; �20�

rij�Q� ÿ rij�P� �
X27

a�13

ba �raij�z� � O�r�; �21�

where r � jy�Q� ÿ x�P�j � jzj: The last equalities in the above equations are true, in view of the fact, that
the shape functions �uai and �raij are quadratic and linear, respectively, in zk, for a � 13; 14; . . . ; 27 (Muk-
herjee et al., 1997, Table 1). Note that these weights ba belong to the element containing P and Q and are
unique on that element (see below Eq. (7)).

As an aside, it is interesting to connect with Toh and Mukherjee (1994, p. 2304), where, for the same
problem, the requirement j$u�Q� ÿ $u�P�j � O�ra� is prescribed as r! 0: It is easy to show that (Muk-
herjee and Mukherjee, 1998), for the BCM shape functions on a singular element:

ui;j�Q� ÿ ui;j�P � �
X12

a�4

�R;J�x�b�aÿ3�uai�z� � O�r� �22�

as �uai�z� is linear in z for a � 4; 5; . . . ; 12:
In view of Eqs. (20)±(21), conditions (iii)±(iv) in Section 4.1 are satis®ed a priori by the BCM shape

functions de®ned by Eqs. (6)±(7). Satisfaction of condition (ii(b)) on oB follows from Eq. (21). The con-
ditions inside B (i and ii(a)), of course, have nothing to do with BEM shape functions that are only de®ned
on the bounding surface oB, but rather with the boundary element method itself. The BCM is derived from
the BEM, and it satis®es these internal point conditions in the same way as does the BEM. (As a bonus, the
BCM shape functions satisfy the Navier±Cauchy equilibrium equations of linear elasticity a priori (see,
below, Eq. (4)), although weights are not de®ned at points p 2 B:) Please note that the above arguments
have been made for the ``worst case scenario'' of the collocation point P 2 oB being an irregular point. Of
course, these arguments also go through for regular points (on or o� contour) on oB.

In view of the above, all the conditions (i)±(iv) are satis®ed a priori by the BCM, and there is no need to
consider ``relaxed smoothness requirements'' in this method. It is worth repeating again that it is extremely
di�cult to ®nd, in general, BEM shape functions (for 3-D elasticity problems) that satisfy conditions (ii(b))±
(iv) a priori. The primary reason for this is that BEM shape functions are de®ned only on the bounding
surface of a body, while the BCM ones are de®ned in B (although the weights are de®ned only on oB).

4.3. Numerical results

The HCBE (18) was ®rst presented in Mukherjee and Mukherjee (1998) but numerical results from this
equation were not presented in that article. This is done for the ®rst time below.

First, please note that Eq. (18) has two free indicies, k and n, so that it represents nine equations. These
equations arise from uk;n (please see the detailed derivation of Eqs. (17) and (18) in Mukherjee and
Mukherjee (1998). Di�erent strategies are possible for collocating Eq. (18) at a boundary point. The ®rst is
to use all nine equations. The second is to use six corresponding to �kn � �1=2��uk;n � un;k�: The six equation
strategy amounts to replacing Ekn, the right-hand side of Eq. (18), by �1=2��Ekn � Enk�: Both the nine and six
equation strategies lead to overdetermined systems, but are convenient for collocating at irregular
boundary points since the source point normal is not involved in these cases. A third, the three equation
strategy, suitable for collocation at regular points, corresponds to the traction components sn. In this case,
the right-hand side (Ekn) of Eq. (18) is replaced by �kEmmdkn � l�Ekn � Enk��nk�P�, where k and l are Lam�e
constants, dij are components of the Kronecker delta and Hooke's law is used. The three equation strategy
involving the traction components is not convenient for collocating the HBCE at a point on an edge or a
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corner of a body where the normal to the body surface has a jump discontinuity. In view of the assumed
continuity of the stress tensor at such a point, this situation leads to a jump in traction at that point, unless
the stress tensor is zero there. One would, therefore, need to use multiple source points, each belonging to a
smooth surface meeting at that irregular point, and collocate separately at these points. Since the primary
purpose here is to demonstrate collocation of Eq. (18) at irregular boundary points, only the nine and six
equation strategies are used below.

It should be mentioned here that, for the HBCM in 2-D elasticity, a strategy corresponding to the ®rst
one above has been successfully employed by Phan et al. (1998) and a strategy corresponding the third one
above has been implemented by Zhou et al. (1999).

The overdetermined system of linear algebraic equations, resulting from the nine and six equation
strategies mentioned above, have been solved by using a subroutine based on QR decomposition of the
system matrix. This subroutine has been obtained form the IMSL software package.

Numerical results have been obtained for a sample problem of a hollow sphere, under internal pressure.
The inner and outer radii of the sphere are one and two units, respectively, the shear modulus l � 1 and
Poisson's ration m � 0:3: The internal pressure is 1.

One-eighth of the sphere is modeled with a surface mesh shown in Fig. 2. The mesh used in this work has
36 elements on each ¯at surface and 36 elements on each curved surface, for a total of 180 surface elements.
It is seen from Fig. 2 that many of the collocation points lie on edges and six of them lie on corners of the
surface of the one-eighth sphere.

Numerical results, for the radial displacement in the sphere, are shown as functions of the radius (along
the x1 axis) in Fig. 3. In this ®gure, the BCM and HBCM results are compared with the exact solution of the
problem (Timoshenko and Goodier, 1970). The ®rst and last points along the axis lie on corners, the rest lie
along an edge. The agreement between the exact, BCM and nine equation HBCM solution is seen to be
excellent.

Fig. 2. A typical mesh on the surface of a one-eighth sphere.
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5. Error analysis and adaptive meshing

5.1. Hypersingular residuals as local error estimators

The idea of using hypersingular residuals, to obtain local error estimates for the BIE, was ®rst proposed
by Paulino (1995) and Paulino et al. (1996). This idea has been applied to the collocation BEM (Paulino
et al., 1996; Menon et al., 1999), to the symmetric Galerkin BEM (Paulino and Gray, 1999) and to the
BNM (Chati et al., 2000). The main idea, applied to the BCM, is as follows:

The usual BCM Eq. (12) is solved ®rst for the boundary variables (tractions and displacements) a. Next,
this value of a is input into the right hand side of Eq. (18) in order to obtain the hypersingular residuals vkn

in the displacement gradients uk;n. Next, the stress residuals are obtained from Hooke's law:

skn � kvmmdkn � l�vkn � vnk�: �23�
Finally, a scalar measure r of the residual, evaluated at the centroid of a triangular surface element, is

postulated based on the idea of energy. This is

r � sknvkn: �24�
It has been proved by Menon et al. (1999) for the BIE that, under certain favorable conditions, real

positive constants c1 and c2 exist such that

c1r6 �6 c2r; �25�
where r is some scalar measure of a hypersingular residual and � is a scalar measure of the exact local error.
Thus, a hypersingular residual is expected to provide a good estimate of the local error on a boundary
element. It should be mentioned here that the de®nitions of the residuals used in Menon et al. (1999) are
analogous to, but di�erent in detail from, the ones proposed in this article.

Fig. 3. Hollow sphere under internal pressure. Radial displacement as a function of radius along the x1 axis. Exact solution: ±±, BCM

solution: �, six equation HBCM solution: �, nine equation HBCM solution: �.
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In the rest of this article, e � r, where r, de®ned in Eq. (24) (and evaluated at an element centroid), is the
hypersingular residual, and e is the local element error estimator that is used to drive an h-adaptive pro-
cedure with the BCM.

5.2. Adaptive meshing strategy

The ¯ow chart for adaptive meshing is shown in Fig. 4.
The remeshing strategy is based on the values of the error estimator e at each element centroid. This

strategy is shown in Fig. 5 in which �e is the average value of the error estimator e over all the boundary
elements.

A possible criterion for stopping cell re®nement can be

�e6 eglobal; �26�

where eglobal has a preset value that depends on the level of overall desired accuracy.

Fig. 4. Flow chart for adaptive meshing.

Fig. 5. Remeshing strategy.
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5.3. Numerical results

5.3.1. Example one ± short clamped cylinder under tension
The ®rst example is concerned with a short cylinder, which is clamped at the bottom and subjected to

unit tensile traction on the top surface (Fig. 6(a)). The radius and length of the cylinder are each two units,
the shear modulus of the cylinder material is 1.0 and the Poisson's ratio is 0.3 (in consistent units). The
initial mesh on the top (loaded) and bottom (clamped) faces of the cylinder are identical and are shown in
Fig. 6(b) as the initial uniform mesh on its curved surface is shown in Fig. 7(b).

It is known (Cruse, 1969; Pickett, 1944) that, for this problem, the normal stress component r33 varies
slowly over much of the clamped face, but exhibits sharp gradients near its boundary. This stress com-
ponent becomes singular on the boundary of the clamped face. The behavior of the shearing stress com-

Fig. 6. Adaptive meshing of the top and bottom faces of a clamped cylinder under tension: (a) geometry and loading, (b) initial mesh

with element error estimators, (c) mesh at the end of the ®rst adaptive step and (d) mesh at the end of the second adaptive step.
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ponent rzr (here r; h; z � 3 are the usual polar coordinates) on the clamped face is qualitatively similar to
that of r33. The stresses are uniform on the loaded face.

It is seen from Figs. 6 and 7 that this behavior is captured well by the adaptive scheme. Element error
estimators are obtained from Eqs. (18), (23) and (24) after ®rst averaging the traction results from Eq. (12)
within each element and then using these averaged traction values. Fig. 6(b) shows that these element error
estimators are largest on the elements near the boundary of the clamped face. As a consequence (Fig. 6(b)±
(d)), the region near the boundary of the clamped face is re®ned most but the mesh on the loaded face of the
cylinder is left unaltered. Also, Fig. 7(c) and (d) shows that some mesh re®nement takes place on the bottom
layer of the curved surface of the cylinder, which is nearest to the clamped face, while the rest of the mesh
on it remains unaltered.

Finally, the mesh statistics, together with �e, the average value of the error estimator e over the entire
surface of the cylinder, appear in Table 1. As expected, �e is seen to decrease with mesh re®nement.

Fig. 7. Adaptive meshing of the curved surface of a clamped cylinder under tension: (a) geometry and loading, (b) initial uniform mesh,

(c) mesh at the end of the ®rst adaptive step and (d) mesh at the end of the second adaptive step.
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5.3.2. Example two ± Lam�e problem for a hollow cylinder
This example is concerned with a thick hollow cylinder, in plane strain, subjected to external radial

tensile loading. The inner and outer radii of the hollow cylinder are one and three units, respectively. The
shear modulus of the material is 1.0, the Poisson's ratio is 0.3 and the external radial traction is 3 (in
consistent units). A quarter of the cylinder is modeled and the initial mesh on the quarter cylinder is shown
in Fig. 8. The bars in Fig. 8 are the error estimators evaluated at the centroids of the boundary elements. As
expected (Paulino et al., 1997; also, please see the discussion in the following paragraph), the error esti-
mators are largest on the surface of the hole and on the elements on the upper and lower surfaces (EBAF
and HCDG) of the cylinder that lie near the hole. (The visible elements are shown in Fig. 8 and the hidden
ones are not.)

The next (and ®nal) mesh, obtained from the adaptive strategy outlined in Sections 5.1 and 5.2 above, is
shown in Fig. 9. Mesh re®nement is carried out vigorously on the upper and lower surfaces EBAF and
HCDG of the cylinder (the hidden elements are not shown in Fig. 9), as well as on the surface FADG of the
hole, while the symmetry planes ABCD and EFGH, on which the stresses are independent of the x3 co-
ordinate, are only slightly re®ned in order to maintain mesh compatibility. Of course, re®nement of the
surfaces EBAF and HCDG is expected in view of the presence of radial stress gradients on these surfaces.
The situation on the curved surface FADG is particularly interesting. In this axisymmetric problem, the
tangential gradients of the stress ®elds in the h direction are, of course, always zero. It is important to note,
however, that the radial stress gradients are large at points on the hole surface, and this fact leads to large
error estimators and signi®cant re®nement of the boundary elements on the surface FADG. The corre-
sponding 2-D case is discussed, in some detail, in Paulino et al. (1997).

Fig. 8. Lam�e problem ± initial mesh on the quarter cylinder together with element error estimators.

Table 1

Mesh statistics and �e for the clamped cylinder under tension

Mesh No. of elements No. of nodes �e

Initial 144 290 0.0086799

After ®rst adaptive step 192 386 0.0048994

After second adaptive step 246 494 0.0042723
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It is important to check the behavior of the actual errors, when the exact solution is available, in adaptive
meshing problems such as this example. The tangential stress rhh, as a function of the radial distance r from
the center of the cylinder, is shown in Fig. 10. The solid line in Fig. 10 is the exact solution (from, e.g.
Timoshenko and Goodier, 1970) while the numerical results, from the initial and the ®nal mesh, are des-
ignated by open circles and plus signs, respectively. The numerical results for the tangential stress are
obtained from the calculated tractions at the traction nodes Ii (see Fig. 1) on the boundary elements on the
symmetry face ABCD in Figs. 8 and 9. The inaccurate results from the initial crude mesh is a consequence
of the chosen mesh, not the method itself. This can be seen, for example, by observing the BCM results for

Fig. 10. Lam�e problem for a hollow cylinder. Tangential stress rhh as a function of radial distance r. Exact solution: ±±, BCM solution

from initial mesh: �, BCM solution from ®nal mesh: �.

Fig. 9. Lam�e problem ± ®nal mesh on the quarter cylinder.
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the Lam�e problem for a hollow sphere under internal pressure in Fig. 3 (open circles), obtained from a
reasonably ®ne mesh; as well as by examining other numerical results from the BCM, in, e.g. Mukherjee
et al. (1997).

The L2 error in a numerical solution in Fig. 10 is de®ned as

� � 100

�rhh

�������������������Pn
i�1��i�2

n

s
; �27�

where the pointwise error �i � �rhh��i�numerical ÿ �rhh��i�exact at node i, n is the number of nodes and �rhh is the
average value of the exact solution for rhh (here 4:5). The resulting values of the L2 errors are 9:83% and
3:83% for the initial and ®nal mesh, respectively. The adaptive meshing procedure is seen to reduce the
error signi®cantly in one step.

6. Concluding remarks

This article has presented two topics related to the boundary contour method: The ®rst is a proof of the
fact that the shape functions of the hypersingular boundary contour method, used in this work, satisfy, a
priori, all the smoothness requirements for collocation at any point on the boundary of a body, provided
that the exact solution of the problem satis®es conditions (i)±(iv) in Section 4.1. The second is the use of an
error estimator, previously employed in the context of the boundary element method, for the estimation of
element-based errors in the BCM; and then carrying out adaptive meshing driven by these estimators. Two
numerical examples illustrate the e�cacy of the proposed method. The reader is also referred to Chati et al.
(2000) for a discussion of adaptivity in the context of the boundary node method.
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